If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-48.3871x+96=0
a = 1; b = -48.3871; c = +96;
Δ = b2-4ac
Δ = -48.38712-4·1·96
Δ = 1957.31144641
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-48.3871)-\sqrt{1957.31144641}}{2*1}=\frac{48.3871-\sqrt{1957.31144641}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-48.3871)+\sqrt{1957.31144641}}{2*1}=\frac{48.3871+\sqrt{1957.31144641}}{2} $
| 7x+53=3x+ | | x/75=9 | | 3.4q-3.9-4.6q=-2.2q-5.1 | | e-2=10 | | 85x=121 | | 3.4q-3.9-4.6q=-2.2q-51 | | (85x)=121 | | (3x+61)=130 | | y=2+63 | | t2+3t-54=0 | | 5x2+75=60 | | 329+5.76m=363.50 | | -38=v-20 | | 3n+3.7=8.8 | | r+1=-12 | | 45x-15x=^2 | | 63+p=147 | | 40=12y-2y | | 3-21=19+3x | | 4=2(3x-2) | | 2y+5=-25 | | 10y-3y+4y=12 | | 22=4s-6 | | 3+4x=9/17 | | -20x=-16 | | 12=4(2x=4)=68 | | 100+30-1+x=180 | | 115+40+1+3x=180 | | 1/5x+1/4=1/3-4/5x+1/3 | | 2(k+4)=3k-6 | | 4n+3=3n+8 | | 2x-5=89 |